
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

CPU Utilization Control System

In Distributed Computing
C. K. Low, T.F. Ang, T.C. Ling, K.K. Phang, L.Y. Por

Abstract— Distributed computing system has been used as a tool to solve many large-scale parallel computational problems. However,

due to the heterogeneity of the resources as well as applications, most of the dependent parallel tasks are not able to complete at the

same time. If the waiting time for task processing increases, overall performance can be degraded significantly cause by the

synchronization between parallel tasks. This research proposes a central processing unit (CPU) Utilization Control system, which is able to

throttle the CPU usage by periodically, forces the associated processes to be idle for a short time. The released CPU power then can be

allocated for other local jobs without scarifying the performance of dependent tasks.

Index Terms—Distributed Computing, CPU Utilization Control, Control System, Dependent Task, Resource Heterogeneity

——————————  ——————————

1 INTRODUCTION

NE of the major challenges in the distributed environ-
ment is the effectiveness of resource allocation for task
execution [1]. Assigning right resources to the right task

is crucial for the performance of task completion. It requires
the understanding on task resource requirements. For exam-
ple, given two machine X and Y, machine X might be more
efficient on executing task A compared to machine Y. Instead,
machine Y is the best to run certain types of applications. Var-
ious researches conducted in the discipline of task scheduling
has addressed the above issues [2][3][4][5].

The inefficiency in task scheduling causes the failure in
completing the remote tasks within the predicted time. The
situation becomes worse with the presence of workflow job.
Workflow job comprises of multiple dependent tasks, which
have to be executed in a predefined order. Therefore, a task
cannot start until its entire parent sub-tasks are completed.
Since the execution time of each task is difficult to predict,
those completed tasks have to wait for the unfinished tasks to
be completed before the workflow job can move to the next
processing stage.

Dynamic CPU utilization control (DCUC) mechanism is
proposed in this article to maximize the resources utilization
of associated machines and shorten the waiting time between
the dependent tasks. This mechanism enables the estimation
of resource capability in real-time and controls the total execu-
tion time needed by both local and remote tasks. This is
achieved by reducing the CPU usage assigned to the remote
tasks. The freed CPU resources can then be reallocated to oth-
er local tasks. As a result, this mechanism provides better re-

source utilization through reduction of local tasks makespan.

From the literature [5][7], we found out that there are no

suitable off-the-shelf tools to be used in this research to dy-
namically control the CPU utilization. As a results, a new dy-
namic CPU utilization controller (DCUC Controller) is pro-
posed and developed in this research. The DCUC Controller is
developed in Microsoft .NET environment.

The paper is organized as follows. Section 2 discusses the li-
terature review on CPU control system while the proposed
system architecture is described in Section 3. Section 4 pro-
vides the snapshot to demonstrate how the allocation of CPU
resources is control. Lastly, a conclusion for the conducted
research is presented in Section 5.

2 RELATED WORKS

There are various CPU control tools [8][9][10] in market,
which are used to control the CPU core, its frequency and uti-
lization. For Window operating systems such as Windows XP,
Windows Vista, and Windows 7, its Windows Task Manager
[6] is capable of controlling the CPU of a particular system.

By default, applications can run on all available cores of a
processor. If a system has more than one processor core, affini-
ty of an application can be assigned to control which core of
the processor can be used by the application. Depend on the
situation, users can choose to prioritize critical applications by
assigning more processor cores to the application. This will
eventually improves the overall performance of the system.
Besides, certain legacy applications are optimized to run on
systems with single core CPU. Problems would arise if these
legacy applications were to run on machines with multiple
cores [7].

Most of the computers today are equipped with CPU con-
trol mechanism embedded in the BIOS. The CPU control
serves as a low-level power saving mechanism especially in
laptops. For example, when a computer is running on battery
power instead of AC (alternating current) power supply, the
CPU control will throttle down the CPU frequency (dynamic
frequency scaling) as a mean to conserve battery power.

O

————————————————

 C.K. Low is currently pursuing masters degree program in computer
science in University of Malaya, Malaysia. E-mail: keatlck@gmail.com

 T.F. Ang is a senior lecturer in computer science in University of Malaya,
Malaysia. E-mail: angtf@um.edu.my

 T.C. Ling is an associate professor in computer science in University of
Malaya, Malaysia. E-mail: tchaw@ um.edu.my

 K.K. Phang is an associate professor in computer science in University of
Malaya, Malaysia. E-mail: kkphang@ um.edu.my

 L.Y. Por is a senior lecturer in computer science in University of Malaya,
Malaysia. E-mail: porlip@ um.edu.my
 (This information is optional; change it according to your need.)

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Besides that, those recent Microsoft Windows based operat-
ing systems also allow the CPU usage to be adjusted through
power settings. By throttling down the CPU’s frequency, the
mechanism does not only save battery power but also helps
reduce the CPU temperature. However, the throttling does
negatively impact the applications and operating systems per-
formance. As a result, users need to decide the trade-off be-
tween system performance and battery life based on the na-
ture of usage.

Besides the mentioned built-in CPU control mechanisms,
efforts had been made to utilize third-party software in order
to achieve better balance between system performance and
battery life. For example, SpeedswitchXP [8] is a third party
software that allows dynamic switching of the frequencies of
CPU. SpeedStepXP enable users to control the CPU frequen-
cies of Windows based operating systems. In Windows XP
environment, users are restricted to manipulate the power
scheme function. The power scheme function in this context
refers to how the operating system should behave with or
without AC power supply. SpeedswitchXP attempts to solve
this limitation by offering users access to different type of
power scheme setting.

ThreadMaster [9] monitors threads and handles high CPU
utilization on a per application basis. This function is primari-
ly designed for terminal servers to host multiple users.
ThreadMaster can also be used to control the CPU utilization
on each virtual machine when multiple virtual machines are
running on the same server. ThreadMaster is a background
service which implements a CPU quota mechanism on top of
the standard thread scheduling algorithms of Microsoft Win-
dows 2000. All running applications are observed by Thread-
Master. The CPU usage of a particular thread will be throttled
by ThreadMaster in real time if it exceeds the utilization thre-
shold. However, this program is not suitable for this research
due to the following shortcoming:

i) Unable to control which application to clamp for CPU
ii) Percentage of CPU utilization is not controllable
iii) Unable to handle thread in multicore or hyper thread-

ing environment
Another CPU control tool, namely Battle Encoder Shirase

(BES) [10] is found to be more suitable to address the problem
above. BES is a tool that throttles the CPU usage of a process.
For example, the CPU usage of a process can be adjusted from
100% down to 40%. By using this method, users can run both
remote and local jobs simultaneously while maximizing the
CPU utilization. BES can also act as an active CPU cooler
software. CPU can be cool down instantly by limiting the CPU
load. Traditional soft-coolers switch idle CPU into sleep-mode
in order to save CPU energy. On the other hand, BES actively
cool down the CPU by throttles down the “over warming”
process i.e. intermittently constraining CPU to be idle for a
short time. Some of the advantages of BES include:

i) Able to control which application to be clamped for

CPU
ii) Able to control the percentage level of CPU utilization

iii) Able to handle thread in multicore or hyper threading
environment

However, BES does not have the functionality to adjust the
CPU dynamically. Any adjustments of the CPU utilization
have to be done manually. Our proposed mechanism is in-
tended to estimate resource capability in real-time and adjust
the CPU utilization on-the-fly. None of the existing tool is
suitable to fulfil this requirement. As a result, a dynamic CPU
utilization controller is proposed and developed in this re-
search.

3 SYSTEM ARCHITECTURE

The proposed CPU Utilization Controller is a platform for de-
veloping distributed application on distributed system. It har-
nesses the spare CPU cycles of a heterogeneous network
which linked the PCs and servers on demand. System admin-
istrators can leverage a collection of tools to monitor and con-
trol the deployed infrastructure. The proposed CPU Utiliza-
tion Control is based on the .NET framework. Since it is oper-
ating in Microsoft platform, it is unique from a technology
point of view as opposed to the widely available Java based
solutions.

Fig. 1 shows the proposed new utilization control architecture
in this research. In order to optimize the resource usage, the
control architecture is embedded with a control loop, which
execute in each checkpoint. Checkpoint in this context refers to
the checkpointing technique that snapshot the current applica-
tion state for recovery purpose. First, the control loop dynami-
cally controls the utilizations of all the processors. Utilization
monitor on each processor sends its utilization in the cur-
rent checkpoint to the Performance Predictive Controller. A
new utilization is generated by the controller for each subtask

and the new utilization is sent to the Utilization Controller.

The controller changes the utilization accordingly. Local job
sensors are used to observe local jobs activities and the results
are sent to Utilization Monitor. The detail functionality of each
component is described as follow:

 Performance Predictive Controller (PPC): The control-

ler that used to predict the behaviour of the running
tasks. The prediction information is send to the schedu-
ler to make scheduling decision.

 Local Job Sensor: The sensor extends the job monitor-

Fig. 1. Utilization control architecture

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ing sensor in order to observe local jobs.
 Utilization Monitor: The utilization monitor uses the

PerformanceCounter class in .NET framework to read
the CPU utilization in each checkpoint signal time. The
Processor performance category has the % Processor
Time performance counter object, which has the _Total
performance counter instance.

 Utilization Controller: The controller is implemented
as a process running on each executor node. In each
checkpoint period, the controller periodically reads the
CPU utilization of the Performance Predictive Control-
ler to generate new CPU utilization.

4 PROTOTYPE IMPLEMENTATION

A testbed which implements the above components is imple-
mented to carry out testing and evaluations of the CPU utiliza-
tion control prototype. The testbed consist of one executor
which serves as a web service task. The prototype is then used
to control the CPU utilization of the mentioned web service
task. This allows us to test the efficiency and usability of the
prototype.

Figure 2 showed the standard CPU utilization of a web service
task, w3wp.exe that runs in Microsoft Windows 7 environ-
ment. The task w3wp.exe serves as the candidate task for our
experiment. As we can see from the above figure, it is running
on 97% CPU utilization with around 10,384 kilobyte of memo-
ry consumption. The overall CPU usage reaches 100%. This
indicates that the web service task is consuming almost all of
the available CPU power and forcing all local tasks to run with
bare minimum resources.

The proposed CPU utilization control prototype was then be-
ing alerted of the situation and attempted to mitigate the prob-
lem. The prototype tried to decrease the CPU utilization of
that web service task from 97% to 20%. The control program
limited the CPU utilization by forcing the targeted process to
periodically sleep for a very short time. Figure 3 shows the

CPU utilization of Web Service task after adjusted to CPU
20%.

Note that the CPU utilization control works in a dynamic way
such that it controls the utilization based on the current beha-
viours of the task. The controlling of task utilization is done
gradually from time to time in order to avoid abrupt change in
CPU usage. This is because a sudden change in CPU usage
will occasionally freeze the computer. Table 1 showed the
summary of the CPU utilization of the task within the first 120
second.

Fig. 2. Original CPU utilization of web service task

Fig. 3. CPU utilization of web service task after controlled

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

TABLE 1
CONTROLLING UTILIZATION OF WEB SERVICE TASK TO CPU 20%

BETWEEN 60S-120S

In the first 60 seconds, the web service was running on a com-
pute intensive task and starts to use excessive processor re-
sources (i.e. CPU 93-97%). The control program sensed the
abnormal behaviour and started the CPU utilization control
mechanism at 60 second. The prototype dynamically hunted
down the offending thread, and clamped the CPU usage of
that task. The CPU utilization of the web service task was be-
ing controlled between 18-25% at the period of 60s to 120s. The
positive result showed that the control program was able to
limit the CPU utilization of the tested task.

5 CONCLUTION

This research proposes a DCUC Controller which is able to
use in dynamic CPU utilization control (DCUC) mechanism.
Dynamic CPU utilization control (DCUC) mechanism is pro-
posed to maximize the resources utilization but shorten the
waiting time between the dependent tasks. This mechanism
enables the estimation on resource capability in real-time and
controls the total execution time needed by both local and re-
mote tasks. It is achieved by reducing the CPU usage that as-
signed to the remote tasks. The freed CPU resources can be
reallocated to other local tasks. As a result, it provides better
resource utilization when the makespan of local tasks is re-
duced.

ACKNOWLEDGMENT

I would like to express my appreciation to my supervisor, Dr.
Ang Tan Fong for his time, guidance, patience, understanding
and valuable suggestions throughout the course of my re-
search. I am grateful to all my friends from Network Research
Lab, most importantly to Jen Funn, Ahmad Riza, Tiong Seng,

Kar Guen, and Chun Yong during the 3 years of my study in
University of Malaya. Last but not least, I would like to thank
my family for their support. Without their support, I do not
think I can make it.

REFERENCES

[1] Al Rawi, A.F. (2011). User priority aware scheduling and dynamic resource

allocation in orthogonal frequency division multiple access. Communications,

IET, IEEE, 5(7), 1006-1019.

[2] Zhou, Tianran. (2011). Hierarchical resource allocation for integrated modular

avionics systems. Systems Engineering and Electronics, IEEE, 22(5), 780-787.

[3] Endo, P.T. (2011). Resource allocation for distributed cloud: concepts and

research challenges. Network, IEEE, 25(4), 42-46.

[4] Ykman-Couvreur, C. (2011). Policy-Based Scheduling and Resource Alloca-

tion for Multimedia Communication on Grid Computing Environment. Sys-

tems Journal, IEEE, 5(4), 451-459.

[5] Wei Guo. (2008). Distributed Computing over Optical Networks. Paper

presented at the Optical Fiber communication/National Fiber Optic Engi-

neers Conference, 2008. OFC/NFOEC 2008.

[6] Windows Task Manager, Available from

http://support.microsoft.com/kb/323527 [Accesed from November 2011]

[7] Jang Uk In. (2011). Linking run-time resource management of embedded

multi-core platforms with automated design-time exploration. Computers &

Digital Techniques, IET, IEEE, 5(2), 123-135.

[8] SpeedswitchXP - CPU frequency control for notebooks running Windows

XP. (2012), Available from: http://www.diefer.de/speedswitchxp/ [Accesed

from November 2011]

[9] ThreadMaster, Available from: http://threadmaster.tripod.com/ [Accesed

from September 2011].

[10] Battle Encoder Shirase, Available from: http://mion.faireal.net/BES/ [Ac-

cesed from September 2011].

